skip to main content


Search for: All records

Creators/Authors contains: "Manick, Rajeev"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The spectrum of the Wolf–Rayet (WR) star WR 63 contains spectral lines of two different O stars that show regular radial velocity (RV) variations with amplitudes of ∼160 and ∼225 km s−1 on a ∼4.03 d period. The light curve shows two narrow eclipses that are 0.2 mag deep on the same period as the RV changes. On the other hand, our data show no significant RV variations for the WR spectral lines. Those findings are compatible with WR 63 being a triple system composed of two non-interacting late-O stars orbiting a WR star on a period longer than 1000 d. The amplitude of the WR spectral line-profile variability reaches 7–8 per cent of the line intensity and seems related to a 0.04 mag periodic photometric variation. Large wind density structures are a possible origin for this variability, but our data are not sufficient to verify this. Our analysis shows that, should the three stars be bound, they would be coeval with an age of about 5.9 ± 1.4 Myr. The distance to the O stars is estimated to be $3.4\, \pm \, 0.5$ kpc. Their dynamical masses are 14.3 ± 0.1 and 10.3 ± 0.1 M⊙. Using rotating single-star evolutionary tracks, we estimate their initial masses to be 18 ± 2 and 16 ± 2 M⊙ for the primary and the secondary, respectively. Regular spectral monitoring is required in the future to detect RV variations of the WR star that would prove that it is gravitationally bound to the close O+OB system and to determine its mass.

     
    more » « less
  2. ABSTRACT Current models predict that binary interactions are a major ingredient in the formation of bipolar planetary nebulae (PNe) and pre-planetary nebulae (PPNe). Despite years of radial velocity (RV) monitoring, the paucity of known binaries amongst the latter systems means data are insufficient to examine this relationship in detail. In this work, we report on the discovery of a long-period (P = 2654 ± 124 d) binary at the centre of the Galactic bipolar PPN IRAS 08005−2356 (V510 Pup), determined from long-term spectroscopic and near-infrared time-series data. The spectroscopic orbit is fitted with an eccentricity of 0.36 ± 0.05, which is similar to that of other long-period post-AGB binaries. Time-resolved Hα profiles reveal high-velocity outflows (jets) with deprojected velocities up to 231$_{-27}^{+31}$ km s−1 seen at phases when the luminous primary is behind the jet. The outflow traced by Hα is likely produced via accretion on to a main-sequence companion, for which we calculate a mass of 0.63 ± 0.13 M⊙. This discovery is one of the first cases of a confirmed binary PPN and demonstrates the importance of high-resolution spectroscopic monitoring surveys using large telescopes in revealing binarity among these systems. 
    more » « less
  3. Abstract We report the discovery of a bright ( $g = 14.5$ mag (AB), $K = 11.9$ mag (Vega)) quasar at redshift $z=0.83$ — the optically brightest (unbeamed) quasar at $z>0.4$ . SMSS J114447.77-430859.3, at a Galactic latitude of $b=+18.1^{\circ}$ , was identified by its optical colours from the SkyMapper Southern Survey (SMSS) during a search for symbiotic binary stars. Optical and near-infrared spectroscopy reveals broad Mg ii , H $\unicode{x03B2}$ , H $\unicode{x03B1}$ , and Pa $\unicode{x03B2}$ emission lines, from which we measure a black hole mass of $\log_{10}\! (M_{\mathrm{BH}}/\mathrm{M}_{\odot}) = 9.4 \pm 0.5$ . With its high luminosity, $L_{\mathrm{bol}} = (4.7\pm1.0)\times10^{47}\,\mathrm{erg\,s}^{-1}$ or $M_{i}(z=2) = -29.74$ mag (AB), we estimate an Eddington ratio of $\approx1.4$ . As the most luminous quasar known over the last ${\sim}$ 9 Gyr of cosmic history, having a luminosity $8\times$ greater than 3C 273, the source offers a range of potential follow-up opportunities. 
    more » « less